题 目:Robust Variable Selection via Nonconcave Penalties with a Upgraded Parsimonious Dynamic Covariance Modeling
主讲人:许林副教授
时 间:2022年12月6日(周二)13:30-14:30
地 点:6号学院楼510会议室
主办单位:银河7163官网 浙江省2011“数据科学与大数据分析协同创新中心”
摘要:
We present a new parsimonious method for joint mean-covariance modeling based on M-estimation and nonconcave penalty. In this paper, the robustness of the proposed model was aimed to address the issue when the working matrix is misspecified and a spot of outliers exist in the dataset. The proposed approach outperforms the traditional method in robustness and variable selections for longitudinal data analysis, particularly when the dataset contains a spot of outliers. The simulation results back up the theoretical findings, and the methodology is further illustrated via an analysis of a real progesterone data example.
主讲人简介:
许林,博士毕业于东北师范大学数学与统计学院,并于2016-2018年在加州大学河滨分校统计系进行博士后研究。现任银河7163官网应用统计系副教授,硕士研究生导师;专业研究方向为:纵向数据分析;稳健估计;因果推断;经验似然理论等。主持完成省部级科学基金两项。近几年在JMVA、SII、CSDA等统计学杂志发表论文10篇。
欢迎各位老师和同学踊跃参加!